
AbstractThis paper explores a Reproducing Kernel Particle Method (RKPM) which incorporates several attractive features. The emphasis is away from classical mesh generated elements in favour of a mesh free system which only requires a set of nodes or particles in space. Using a Gaussian function or a cubic spline function, flexible window functions are implemented to provide refinement in the solution process. It also creates the ability to analyse a specific frequency range in dynamic problems reducing the computer time required. This advantage is achieved through an increase in the critical time step when the frequency range is low and a large window is used. The stability of the window function as well as the critical time step formula are investigated to provide insight into RKPMs. The predictions of the theories are confirmed through numerical experiments by performing reconstructions of given functions and solving elastic and elastic–plastic one‐dimensional (1‐D) bar problems for both small and large deformation as well as three 2‐D large deformation non‐linear elastic problems. Numerical and theoretical results show the proposed reproducing kernel interpolation functions satisfy the consistency conditions and the critical time step prediction; furthermore, the RKPM provides better stability than Smooth Particle Hydrodynamics (SPH) methods. In contrast with what has been reported in SPH literature, we do not find any tensile instability with RKPMs.
elastic-plastic large deformations, consistency conditions, Vibrations in dynamical problems in solid mechanics, window functions, mesh free system, cubic spline functions, critical time step, Rods (beams, columns, shafts, arches, rings, etc.), stability, Other numerical methods in solid mechanics
elastic-plastic large deformations, consistency conditions, Vibrations in dynamical problems in solid mechanics, window functions, mesh free system, cubic spline functions, critical time step, Rods (beams, columns, shafts, arches, rings, etc.), stability, Other numerical methods in solid mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 725 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
