Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Engineering
Article . 1992 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient‐dependent plasticity: Formulation and algorithmic aspects

Gradient-dependent plasticity: Formulation and algorithmic aspects
Authors: René de Borst; Hans Muhlhaus;

Gradient‐dependent plasticity: Formulation and algorithmic aspects

Abstract

AbstractA plasticity theory is proposed in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The consistency condition now results in a differential equation instead of an algebraic equation as in conventional plasticity. To properly solve the set of non‐linear differential equations the plastic multiplier is discretized in addition to the usual discretization of the displacements. For appropriate boundary conditions this formulation can also be derived from a variational principle. Accordingly, the theory is complete.The addition of gradient terms becomes significant when modelling strain‐softening solids. Classical models then result in loss of ellipticity of the governing set of partial differential equations. The addition of the gradient terms preserves ellipticity after the strain‐softening regime has been entered. As a result, pathological mesh dependence as obtained in finite element computations with conventional continuum models is no longer encountered. This is demonstrated by some numerical simulations.

Keywords

variational principle, strain-softening solids, plastic multiplier, yield strength, Laplacian, Plastic materials, materials of stress-rate and internal-variable type, Other numerical methods in solid mechanics, consistency condition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    795
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
795
Top 1%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!