
doi: 10.1002/nme.1284
AbstractA discontinuous reproducing kernel element approximation is proposed in the case where weak discontinuity exists over an interface in the physical domain. The proposed method can effectively take care of the discontinuity of the derivative by truncating the window function and global partition polynomials. This new approximation keeps the advantage of both finite element methods and meshfree methods as in the reproducing kernel element method. The approximation has the interpolation property if the support of the window function is contained in the union of the elements associated with the corresponding node; therefore, the continuity of the primitive variables at nodes on the interface is ensured. Furthermore, it is smooth on each subregion (or each material) separated by the interface. The major advantage of the method is its simplicity in implementation and it is computationally efficient compared to other methods treating discontinuity. The convergence of the numerical solution is validated through calculations of some material discontinuity problems. Copyright © 2005 John Wiley & Sons, Ltd.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
