
Conventional diffusion MRI yields voxel‐averaged parameters that suffer from ambiguities for heterogeneous anisotropic materials such as brain tissue. Using principles from solid‐state NMR spectroscopy, we have previously introduced the shape of the diffusion encoding tensor as a separate acquisition dimension that disentangles isotropic and anisotropic contributions to the observed diffusivities, thereby allowing for unconstrained data inversion into diffusion tensor distributions with “size,” “shape,” and orientation dimensions. Here we combine our recent non‐parametric data inversion algorithm and data acquisition protocol with an imaging pulse sequence to demonstrate spatial mapping of diffusion tensor distributions using a previously developed composite phantom with multiple isotropic and anisotropic components. We propose a compact format for visualizing two‐dimensional arrays of the distributions, new scalar parameters quantifying intra‐voxel heterogeneity, and a binning procedure giving maps of all relevant parameters for each of the components resolved in the multidimensional distribution space.
Diffusion Tensor Imaging, Phantoms, Imaging, Polymers, Uncertainty, Color, Signal Processing, Computer-Assisted, Research Articles, Algorithms, Liquid Crystals
Diffusion Tensor Imaging, Phantoms, Imaging, Polymers, Uncertainty, Color, Signal Processing, Computer-Assisted, Research Articles, Algorithms, Liquid Crystals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
