
doi: 10.1002/mma.651
AbstractWe present a numerical scheme for Landau–Lifshitz–Gilbert equation coupled with the equation of elastodynamics. The considered physical model describes the behaviour of ferromagnetic materials when magnetomechanical coupling is taken into account. The time‐discretization is based on the backward Euler method with projection. In the numerical approximation, the two equations are decoupled by a suitable linearization in order to solve the magnetic and mechanic part separately. The resulting semi‐implicit scheme is linear and allows larger time‐steps than explicit methods. We prove stability and error estimates for the presented time discretization in 2D. Finally, we test the accuracy of the scheme on an academic numerical example with known exact solution. Copyright © 2005 John Wiley & Sons, Ltd.
Variational methods applied to problems in optics and electromagnetic theory, Statistical mechanics of magnetic materials, Landau-Lifshitz equation, numerical methods, magnetostriction, Integration with respect to measures and other set functions
Variational methods applied to problems in optics and electromagnetic theory, Statistical mechanics of magnetic materials, Landau-Lifshitz equation, numerical methods, magnetostriction, Integration with respect to measures and other set functions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
