
doi: 10.1002/mma.1608 , 10.1002/mma.2646
This paper perturbs the famous logistic equation with infinite delay urn:x-wiley:01704214:media:mma1608:mma1608-math-0001 into the corresponding stochastic system urn:x-wiley:01704214:media:mma1608:mma1608-math-0002This study shows that the above stochastic system has a global positive solution with probability 1 and gives the asymptotic pathwise estimation of this solution. In addition, the superior limit of the average in time of the sample path of the solution is estimated. This work also establishes the sufficient conditions for extinction, nonpersistence in the mean, and weak persistence of the solution. The critical value between weak persistence and extinction is obtained. Then these results are extended to n‐dimensional stochastic Lotka–Volterra competitive system with infinite delay. Finally, this paper provides some numerical figures to illustrate the results. The results reveal that, firstly, different types of environmental noises have different effects on the persistence and extinction of the population system; secondly, the delay has no effect on the persistence and extinction of the stochastic system.Copyright © 2012 John Wiley & Sons, Ltd.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
