Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medicinal Research R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medicinal Research Reviews
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemInform
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
ChemInform
Other literature type
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sulfotransferases and sulfated oligosaccharides

Authors: Koichi Honke; Naoyuki Taniguchi;

Sulfotransferases and sulfated oligosaccharides

Abstract

AbstractStructural diversity of the sugar chains attached to proteins and lipids that arises from the variety of combinations of different monosaccharides, different types of linkages, branch formation and secondary modifications, such as sulfation, possesses a large amount of biological information. A number of proteoglycans, glycoproteins, and glycolipids contain sulfated carbohydrates. Their sulfate groups provide a negative charge and play a role in a specific molecular recognition process. The sulfation of oligosaccharides is catalyzed by the Golgi‐associated sulfotransferases. Recent success in molecular cloning of these sulfotransferases has brought a breakthrough in the understanding of biological function of sulfated oligosaccharides in a variety of contexts. Investigations on the relationship of sulfated oligosaccharides to human diseases including hereditary deficiency, cancer, inflammation, and infection may provide hints for curing disastrous diseases. © 2002 Wiley Periodicals, Inc. Med Res Rev, 22, No. 6, 637–654, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/med.10020

Related Organizations
Keywords

Heparin, Sulfates, Chondroitin Sulfates, Molecular Sequence Data, Dermatan Sulfate, Oligosaccharides, Epitopes, Pituitary Hormones, Structure-Activity Relationship, Carbohydrate Sequence, Keratan Sulfate, Animals, Humans, Proteoglycans, Heparitin Sulfate, Glycolipids, Sulfotransferases, Glycoproteins, Glycosaminoglycans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!