Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Movement Disordersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Movement Disorders
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pathophysiology of tic disorders

Authors: Dorin, Yael; Esther, Vinner; Izhar, Bar-Gad;

Pathophysiology of tic disorders

Abstract

ABSTRACTTics are the defining symptom of Tourette syndrome and other tic disorders (TDs); however, they form only a part of their overall symptoms. The recent surge of studies addressing the underlying pathophysiology of tics has revealed an intricate picture involving multiple brain areas and complex pathways. The myriad of pathophysiological findings stem, at least partially, from the multifaceted properties of tics and the disorders that express them. Distinct brain pathways mediate the expression of tics, whereas others are involved in the generation of the premonitory urge, associated comorbidities, and other changes in brain state. Expression of these symptoms is controlled by additional networks underlying voluntary suppression by the patient or those reflecting overall behavioral state. This review aims to simplify the complex picture of tic pathophysiology by dividing it into these key components based on converging data from human and animal model studies. Thus, involvement of the corticobasal ganglia pathway and its interaction with motor, sensory, limbic, and executive networks in each of the components as well as their control by different neuromodulators is described. This division enables a focused definition of the neuronal systems involved in each of these processes and allows a better understanding of the pathophysiology of TDs as a whole. © 2015 International Parkinson and Movement Disorder Society

Related Organizations
Keywords

Tic Disorders, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!