<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractLet E be a Banach space, Ω a locally compact space, and μ a positive Radon measure on Ω. In this paper, through extending to Lebesgue‐Bochner spaces, we show that the topology β1 introduced by Singh is a type of strict topology. We then investigate various properties of this locally convex topology. In particular, we show that the strong dual of L1(μ, E) can be identified with a Banach space. We also show that the topology β1 is a metrizable, barrelled or bornological space if and only if Ω is compact. Finally, we consider the generalized group algebra \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^1(G, \mathbf {A})$\end{document} under certain natural locally convex topologies. As an application of our results, we prove that \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^1(G,\mathbf {A})$\end{document} under the topology β1 is a complete semi‐topological algebra.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |