
AbstractIn this note we study the spectral properties of a multiplication operator in the space Lp(X)m which is given by an m by m matrix of measurable functions. Our particular interest is directed to the eigenvalues and the isolated spectral points which turn out to be eigenvalues. We apply these results in order to investigate the spectrum of an ordinary differential operator with so called “floating singularities”.
multiplication operator, Linear operators on function spaces (general), characterization of the spectrum, Linear boundary value problems for ordinary differential equations, boundary eigenvalue problems, General spectral theory of ordinary differential operators
multiplication operator, Linear operators on function spaces (general), characterization of the spectrum, Linear boundary value problems for ordinary differential equations, boundary eigenvalue problems, General spectral theory of ordinary differential operators
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
