Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematical Logic Q...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematical Logic Quarterly
Article . 1997 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Nondeterminism, Enumeration Reducibility and Polynomial Bounds

On nondeterminism, enumeration reducibility and polynomial bounds
Authors: Copestake, Kate;

On Nondeterminism, Enumeration Reducibility and Polynomial Bounds

Abstract

AbstractEnumeration reducibility is a notion of relative computability between sets of natural numbers where only positive information about the sets is used or produced. Extending e‐reducibility to partial functions characterises relative computability between partial functions. We define a polynomial time enumeration reducibility that retains the character of enumeration reducibility and show that it is equivalent to conjunctive non‐deterministic polynomial time reducibility. We define the polynomial time e‐degrees as the equivalence classes under this reducibility and investigate their structure on the recursive sets, showing in particular that the pe‐degrees of the computable sets are dense and do not form a lattice, but that minimal pairs exist. We define a jump operator and use it to produce a characterisation of the polynomial hierarchy.

Related Organizations
Keywords

nondeterminism, Complexity of computation (including implicit computational complexity), relative computability, minimal pairs, jump operator, enumeration reducibility, polynomial time degree, Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.), Models of computation (Turing machines, etc.), polynomial enumeration, conjunctive reducibility, Turing machines and related notions, polynomial time reducibility, recursive sets, Other degrees and reducibilities in computability and recursion theory, Complexity classes (hierarchies, relations among complexity classes, etc.), computable sets, enumeration degrees

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!