Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Scien...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Science of Food and Agriculture
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Effects of hop varieties on ruminal fermentation and bacterial community in an artificial rumen (rusitec)

Authors: Nelmy, Narvaez; Yuxi, Wang; Zhonjou, Xu; Trevor, Alexander; Scott, Garden; Tim, McAllister;

Effects of hop varieties on ruminal fermentation and bacterial community in an artificial rumen (rusitec)

Abstract

AbstractBACKGROUND: There is a growing interest in the use of hops (Humulus lupulus) as an alternative to antibiotics to manipulate ruminal fermentation. However, the effects of different hop varieties on ruminal fermentation and bacterial populations have not been studied. Here the effects of three hop varieties, Cascade (CAS), Millennium (MIL) and Teamaker (TM), at a level of 800 µg mL−1 inoculum on ruminal fermentation and microbial populations in an artificial rumen system (rusitec) fed a barley silage‐based total mixed ration were investigated. Bacterial populations were assessed using real‐time polymerase chain reaction and expressed as a percentage of total bacterial 16S rRNA gene copies.RESULTS: All hops reduced (P < 0.001) total gas, methane and the acetate:propionate ratio. Liquid‐associated Fibrobacter succinogenes, Ruminococcus albus and Streptococcus bovis were reduced (P < 0.05) by MIL and TM. Feed particle‐associated S. bovis was reduced (P < 0.01) by MIL and TM, but TM and CAS increased (P < 0.01) Ruminobacter amylophilus and Prevotella bryantii respectively. Methanogens were decreased (P < 0.05) by MIL in both liquid and solid fractions and by CAS in the solid fraction. The total amount of α‐ and β‐acids in hops affected the ruminal fermentation.CONCLUSION: Hop‐induced changes in fermentation and microbial populations may improve energy efficiency use in the rumen. Further research is needed to determine the effects of hops on in vivo ruminal fermentation, microbial populations and animal performance. Copyright © 2012 Society of Chemical Industry

Keywords

Silage, Rumen, Bacteria, Plant Extracts, Hordeum, Diet, Species Specificity, RNA, Ribosomal, 16S, Fermentation, Animals, Gases, Propionates, Humulus, Methane, Acetic Acid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!