Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmaceu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmaceutical Sciences
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pharmacokinetics in Drug Discovery

Authors: Ana, Ruiz-Garcia; Marival, Bermejo; Aaron, Moss; Vicente G, Casabo;

Pharmacokinetics in Drug Discovery

Abstract

The aim of this current review is to summarize the present status of pharmacokinetics in Drug Discovery. The review is structured into four sections. The first section is a general overview of what we understand by pharmacokinetics and the different LADMET aspects: Liberation, Absorption, Distribution, Metabolism, Excretion, and Toxicity. The second section highlights the different computational or in silico approaches to estimate/predict one or several aspects of the pharmacokinetic profile of a discovery lead compound. The third section discusses the most commonly used in vitro methodologies. The fourth and last section examines the various approaches employed towards the pharmacokinetic assessment of discovery molecules; including all the LADME processes, discussing the different mathematical methodologies available to establish the PK profile of a test compound; what the main differences are and what should be the criteria for using one or another mathematical approach. The major conclusion of this review is that the use of the appropriate preclinical assays has a key role in the long-term viability of a pharmaceutical company since applying the right tools early in discovery will play a key role in determining the company's ability to discover novel safe and effective therapeutics to patients as quickly as possible.

Related Organizations
Keywords

Models, Molecular, Proteomics, Drug Design, Animals, Humans, Pharmacokinetics, Genomics, Models, Biological, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    162
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
162
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!