Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Climatology
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Heavy rainfall occurrences in northeast India

Authors: Rahul Mahanta; Debojit Sarma; Amit Choudhury;

Heavy rainfall occurrences in northeast India

Abstract

AbstractIn operational meteorology, forecasting heavy rainfall (HRF) events has been a long‐standing challenge in India. This is especially true in certain regions where the physical geography lends itself to the creation of such HRF events. Northeast India (NEI) is one such region within the Asian monsoon zone, which receive very HRF during the pre‐monsoon and summer monsoon season and the summer–autumn transition month of October. These events cause flooding, damage crops and bring life to standstill. In the present work, the characteristics of HRF events in NEI are studied. The seasonal and spatial variations of HRF occurrences are analysed using 31 year (1971–2001) of daily rainfall data from 15 rainfall stations. Using the daily data obtained from the Indian Meteorological Department, the most favorable locations were found for the stations between 27.5°N and 28.1°N. The most favorable time of occurrence of these events are between 10 June and 5 August. July records the largest number of HRF events followed by June and August. The aggregate of extreme rain events over the region has a significant decreasing trend over the region. Before the monsoon sets in, there is considerable thunderstorm (TS) activity in this region in the month of April and May that are also the cause of HRF events. While many of these HRF events occur associated with the pre‐monsoon Nor'westers (tornadoes), some severe TSs may occur during the monsoon season. So, we present a climatology of severe TS days. Also we present the annual and seasonal variation of convective available potential energy (CAPE) and convective inhibition energy (CINE) at Guwahati as the index of the thermal instability. Between 1973 and 2001, CAPE shows a decreasing trend whereas CINE shows an increasing trend which seems reasonable due to the HRF events' decreasing trend. Copyright © 2012 Royal Meteorological Society

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!