Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hasanuddin Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Climatology
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Complicated ENSO models do not significantly outperform very simple ENSO models

Authors: Halide, Halmar; Ridd, Peter;

Complicated ENSO models do not significantly outperform very simple ENSO models

Abstract

AbstractAn extremely simple univariate statistical model called ‘IndOzy’ was developed to predict El Niño‐Southern Oscillation (ENSO) events. The model uses five delayed‐time inputs of the Niño 3.4 sea surface temperature anomaly (SSTA) index to predict up to 12 months in advance. The prediction skill of the model was assessed using both short‐ and long‐term indices and compared with other operational dynamical and statistical models. Using ENSO‐CLIPER(climatology and persistence) as benchmark, only a few statistical models including IndOzy are considered skillful for short‐range prediction. All models, however, do not differ significantly from the benchmark model at seasonal Lead‐3–6. None of the models show any skill, even against a no‐skill random forecast, for seasonal Lead‐7. When using the Niño 3.4 SSTA index from 1856 to 2005, the ultra simple IndOzy shows a useful prediction up to 4 months lead, and is slightly less skillful than the best dynamical model LDEO5. That such a simple model such as IndOzy, which can be run in a few seconds on a standard office computer, can perform comparably with respect to the far more complicated models raises some philosophical questions about modelling extremely complicated systems such as ENSO. It seems evident that much of the complexity of many models does little to improve the accuracy of prediction. If larger and more complex models do not perform significantly better than an almost trivially simple model, then perhaps future models that use even larger data sets, and much greater computer power may not lead to significant improvements in both dynamical and statistical models. Investigating why simple models perform so well may help to point the way to improved models. For example, analysing dynamical models by successively stripping away their complexity can focus in on the most important parameters for a good prediction. Copyright © 2007 Royal Meteorological Society

Countries
Australia, Indonesia
Keywords

El Ni??o;climate forecast;statistical model, 190

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Average
Green