Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Morpholog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Morphology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Whale tear glands in the bowhead and the beluga whales: Source and function

Authors: Susan J. Rehorek; Rapahela Stimmelmayr; John C. George; Robert Suydam; Denise M. McBurney; JGM Thewissen;

Whale tear glands in the bowhead and the beluga whales: Source and function

Abstract

AbstractOrbital glands are found in many tetrapod vertebrates, and are usually separate structures, consisting of individual glands lying in the eyelids and both canthi of the orbit. In cetaceans, however, the orbital glandular units are less distinct and have been described by numerous authors as a single, periorbital mass. There are few histochemical and immunhistochemical studies to date of these structures. In this study, we examined the orbital glandular region of both the bowhead whale (Balaena mysticetus: Mysticeti) and the beluga whale (Delphinapterus leucas: Odontoceti) using histological, histochemical, and immunohistochemical techniques. Histologically, in the bowhead, three glandular areas were noted (circumorbital, including Harderian and lacrimal poles), palpebral (midway in the lower eyelid), and rim (near the edge of the eyelid). In the beluga, there was only a large, continuous mass within the eyelid itself. Histochemical investigation suggests neither sexual dimorphism nor age‐related differences, but both whales had two cell types freely intermingling with each other in all glandular masses. Large cells (cell type 1) were distended by four histochemically distinct intracellular secretory granules. Smaller cells (cell type 2) were not distended (fewer granules) and had two to three histochemically distinct intracellular secretory granules. The beluga orbital glands had additional lipid granules in cell type 1. Counterintuitively, both lipocalin and transferrin were localized to cell type 2 only. This intermingling of cell types is unusual for vertebrates in whom individual orbital glands usually have one cell type with one to two different secretory granules present. The heterogeneity of the orbital fluid produced by cetacean orbital glands implies a complex function, or series of functions, for these orbital glands and their role in producing the tear fluid.

Keywords

Male, Bowhead Whale, Animal Structures, Animals, Female, Beluga Whale

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!