Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Morpholog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Morphology
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii)

Authors: Giles, S; Rogers, M; Friedman, M;

Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii)

Abstract

ABSTRACTEndocasts of the osseous labyrinth have the potential to yield information about both phylogenetic relationships and ecology. Although bony labyrinth morphology is well documented in many groups of fossil vertebrates, little is known for early Neopterygii, the major fish radiation containing living teleosts, gars and the bowfin. Here, we reconstruct endocasts of the bony labyrinth and associated structures for a sample of Mesozoic neopterygian fishes using high‐resolution computed tomography. Our sample includes taxa unambiguously assigned to either the teleost (Dorsetichthys, “Pholidophorus,” Elopoides) and holostean (“Aspidorynchus,” “Caturus,” Heterolepidotus) total‐groups, as well as examples of less certain phylogenetic position (an unnamed parasemionotid and Dapedium). Our models provide a test of anatomical interpretations for forms where bony labyrinths were reconstructed based on destructive tomography (“Caturus”) or inspection of the lateral wall of the cranial chamber (Dorsetichthys), and deliver the first detailed insights on inner ear morphology in the remaining taxa. With respect to relationships, traits apparent in the bony labyrinth and associated structures broadly support past phylogenetic hypotheses concerning taxa agreed to have reasonably secure systematic placements. Inner ear morphology supports placement of Dapedium with holosteans rather than teleosts, while preserved structure in the unnamed parasemionotid is generalized to the degree that it provides no evidence of close affinity with either of the crown neopterygian lineages. This study provides proof‐of‐concept for the systematic utility of the inner ear in neopterygians that, in combination with similar findings for earlier‐diverging actinopterygian lineages, points to the substantial potential of this anatomical system for addressing the longstanding questions in the relationships of fossil ray‐finned fishes to one another and living groups. J. Morphol. 279:426–440, 2018. © 2016 Wiley Periodicals, Inc.

Country
United Kingdom
Related Organizations
Keywords

Imaging, Three-Dimensional, Phenotype, Fossils, Ear, Inner, Fishes, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
bronze