
AbstractLet G be a graph on n vertices and N2(G) denote the minimum size of N(u) ∪ N(v) taken over all pairs of independent vertices u, v of G. We show that if G is 3‐connected and N2(G) ⩾ ½(n + 1), then G has a Hamilton cycle. We show further that if G is 2‐connected and N2(G) ⩾ ½(n + 3), then either G has a Hamilton cycle or else G belongs to one of three families of exceptional graphs.
Eulerian and Hamiltonian graphs, Connectivity, neighborhood unions, Hamiltonian cycles
Eulerian and Hamiltonian graphs, Connectivity, neighborhood unions, Hamiltonian cycles
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
