Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biophoton...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biophotonics
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inhibition of cortical neural networks using infrared laser

Authors: Qingling Xia; Tobias Nyberg;

Inhibition of cortical neural networks using infrared laser

Abstract

The aim of the present study is to optimize parameters for inhibiting neuronal activity safely and investigating thermal inhibition of rat cortex neural networks in vitro by continuous infrared (IR) laser. Rat cortex neurons were cultured on multi‐electrode arrays until neural networks were formed with spontaneous neural activity. Neurons were then irradiated to inhibit the activity of the networks using different powers of 1550 nm IR laser light. A finite element heating model, calibrated by the open glass pipette method, was used to calculate temperature increases at different laser irradiation intensities. A damage signal ratio (DSR) was evaluated to avoid excessive heating that may damage cells. The DSR predicted that cortex neurons should be safe at temperatures up to 49.6°C for 30 seconds, but experiments suggested that cortex neurons should not be exposed to temperatures over 46°C for 30 seconds. Neural response experiments showed that the inhibition of neural activity is temperature dependent. The normal neural activity could be inhibited safely with an inhibition degree up to 80% and induced epileptiform activity could be suppressed. These results show that continuous IR laser radiations provide a possible way to safely inhibit the neural network activity.

Related Organizations
Keywords

Cerebral Cortex, Neurons, Infrared Rays, Lasers, Temperature, Animals, Nerve Net, Safety, Rats

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!