Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Toxicology
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

Endocrine disruption effects of p,p′‐DDE on juvenile zebrafish

Authors: Monteiro, Marta Sofia; Pavlaki, Maria; Faustino, Augusto; Rêma, Alexandra; Franchi, Mariana; Gediel, Letícia; Loureiro, Susana; +3 Authors

Endocrine disruption effects of p,p′‐DDE on juvenile zebrafish

Abstract

AbstractThe persistent organic pollutant p,p′‐DDE, the major metabolite of the insecticide DDT, has displayed evidence of endocrine disruption through the inhibition of androgen binding to androgen receptors in different species. Although p,p′‐DDE was continuously detected in wild fish with abnormal gonad development such as intersex, little is known about its mode of action during gonad development in fish. To elucidate the potential endocrine effects of this pollutant in zebrafish (Danio rerio), juveniles (30 days post hatch) were exposed to p,p′‐DDE during the critical window of sexual differentiation. Fish were exposed to sublethal concentrations ranging from 0.01 to 20 µg l–1 over 14 days and were maintained in control water for an additional 4 months. As core endpoints, the vitellogenin (vtg) concentration was measured at the end of exposure, and sex ratio and the gonadosomatic index were assessed 4 months after the end of exposure. An increase in vtg production in whole body homogenate was observed in fish exposed to 0.2 and 2.0 µg l–1 p,p′‐DDE. No significant differences were displayed in morphological parameters such as the gonadosomatic index of males and females or sex ratio. However, exposed females presented histopathological changes that include the reduction of the number of mature oocytes, which might impair their successful reproduction. These results demonstrate the ability of p,p′‐DDE to cause endocrine disruption in zebrafish exposed during gonad differentiation of juvenile specimens. Furthermore, vtg induction by p,p′‐DDE in juvenile zebrafish arises as a predictive marker for adverse effects of this DDT metabolite on the ovarian function of female zebrafish. Copyright © 2014 John Wiley & Sons, Ltd.

Country
Portugal
Keywords

Male, Sex Differentiation, Dichlorodiphenyl Dichloroethylene, Endocrine Disruptors, ecotoxicology, Lethal Dose 50, Vitellogenins, Toxicity Tests, Acute, Animals, Sex Ratio, pesticide, Zebrafish, persistent organic pollutant, fish, Danio rerio, Ovary, Toxicity Tests, Subacute, histopathology, antiandrogen, Female, vitellogenin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!