
doi: 10.1002/hyp.7936
Tropical alpine grasslands, locally known as paramos, are the water towers of the northern Andes. They are an essential water source for drinking water, irrigation schemes and hydropower plants. But despite their high socio-economic relevance, their hydrological processes are very poorly understood. Since environmental change, ranging from small scale land-use changes to global climate change, is expected to have a strong impact on the hydrological behaviour, a better understanding and hydrological prediction are urgently needed. In this paper, we apply a set of nine hydrological models of different complexity to a small, well monitored upland catchment in the Ecuadorian Andes. The models represent different hypotheses on the hydrological functioning of the paramo ecosystem at catchment scale. Interpretation of the results of the model prediction and uncertainty analysis of the model parameters reveals important insights in the evapotranspiration, surface runoff generation and base flow in the paramo. However, problems with boundary conditions, particularly spatial variability of precipitation, pose serious constraints on the differentiation between model representations.
550, 500
550, 500
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
