
AbstractThe cellular delivery of oligonucleotides has been a major obstacle in the development of therapeutic antisense agents. PNAs (Peptide Nucleic Acid) are unique in providing a modular peptidic backbone that is amenable to structural and charge modulation. While cationic PNAs have been shown to be taken up by cells more efficiently than neutral PNAs, the generality of uptake across different nucleobase sequences has never been tested. Herein, we quantified the relative uptake of PNAs across a library of 10 000 sequences for two different PNA backbones (cationic and neutral) and identified sequences with high uptake and low uptake. We used the high uptake sequence as a bait for target identification, leading to the discovery that a protein, caprin‐1, binds to PNA with backbone and sequence discrimination. We further showed that purified caprin‐1 added to cell cultures enhanced the cellular uptake of PNA as well as DNA and RNA.
Caprin-1, Cellular uptake, Peptide nucleic acids, Antisense agents, ddc: ddc:540
Caprin-1, Cellular uptake, Peptide nucleic acids, Antisense agents, ddc: ddc:540
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
