Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Auckland University ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Food Science & Nutrition
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Food Science & Nutrition
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
versions View all 3 versions
addClaim

Physicochemical and sensory characteristics of fermented sheepmeat sausage

Authors: Lu, Y; Young, OA; Brooks, JD;

Physicochemical and sensory characteristics of fermented sheepmeat sausage

Abstract

AbstractThe aim of the study was to compare the physicochemical and sensory characteristics of fermented, cured sausages made from equivalent muscle groups of beef, pork, and sheepmeat. The last has no commercial examples and represents an unexploited opportunity. Using seven replicates of shoulder meat and subcutaneous fat, sausages were made with 64%, 29%, 4%, 2%, 0.2%, and 0.01% of lean meat, fat, NaCl, glucose, sodium pyrophosphate, and lactic culture, respectively. Following anaerobic fermentation (96 h, 30°C), there were no significant differences between the species in mean texture (hardness, springiness, adhesiveness, cohesiveness) and pH, and only minor differences were seen in color. However, although not consumer tested, it is argued that consumers would be able to pick a texture difference due to different fat melting point ranges, highest for sheepmeat. This work was followed by a sensory experiment to find out if characteristic sheepmeat flavors could be suppressed to appeal to unhabituated consumers. To simulate a very strongly characteristic sheepmeat, beef sausage mixtures (above) were spiked, or not, with 4‐methyloctanoic, 4‐methylnonanoic acid, and skatole (5.0, 0.35, and 0.08 mg kg−1, respectively). Sodium nitrite (at 0.1 g kg−1) and a garlic/rosemary flavor were variably added to create a 23 factorial design. In a randomized design, 60 consumers found that spiked sheepmeat flavors caused an overall significant decrease in mean liking on a 1–9 scale (5.83 vs. 5.35, P = 0.003), but this was completely negated by the garlic/rosemary addition (5.18 vs. 6.00, P < 0.001). Nitrite had no effect on liking (5.61 vs. 5.58, P = 0.82), although nitrite might be included in commercial examples to minimize fat oxidation and suppress growth of clostridia. Thus, sheepmeat flavors could be suppressed to appeal to unhabituated consumers. Commercial examples could thus be made for these consumers, but the mandatory use of the name “mutton” in some markets would adversely affect prospects.

Country
New Zealand
Related Organizations
Keywords

Sheepmeat, 4-methyloctanoic acid, Fermentation, Spicing, 630, Skatole, 664, Original Research

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Green
gold