Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nahrung/Foodarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nahrung/Food
Article . 1984 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Nahrung/Food
Article . 1984
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plant inhibitors of proteolytic enzymes

Authors: B. Romanowska; G. Mossor; J. Skupin;

Plant inhibitors of proteolytic enzymes

Abstract

AbstractThe presence of inhibitors of proteinases was stated in many species of plants. There are macropeptides of the molecular weight ranging from 3700 to 8000, often bound to carbohydrates. Potential sources of inhibitors of proteinases are legumes, cereals, potatoes and also some fruits. They are characterized by different activity. „Single‐headed”︁ inhibitors inhibit one type of proteolytic enzyme, when „double‐headed”︁ inhibitors, possessing two independent active sites, can inhibit several types of proteolytic enzymes at the same time. They also differ in the resistance to temperature and change of pH. The role and importance of inhibitors of proteinases is not exactly explained. They are used in the pharmaceutical, baking and beer‐industry as well as in the therapy of numerous diseases.

Related Organizations
Keywords

Kinetics, Species Specificity, Protease Inhibitors, Plants, Trypsin Inhibitors, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!