Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Toxico...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Toxicology and Chemistry
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toxic effects of PCB126 and TCDD on shortnose sturgeon and Atlantic sturgeon

Authors: E. A. Habeck; R. Christopher Chambers; Isaac Wirgin; Nirmal K. Roy; Dawn D. Davis;

Toxic effects of PCB126 and TCDD on shortnose sturgeon and Atlantic sturgeon

Abstract

AbstractExposure to chemical contaminants is often invoked to explain recruitment failures to populations of sturgeon worldwide, but there is little empirical evidence to support the idea that young sturgeon are sensitive at environmentally relevant concentrations. The authors used shortnose sturgeon (Acipenser brevirostum) and Atlantic sturgeon (Acipenser oxyrinchus) as models to investigate the sensitivities of sturgeon to early-life-stage toxicities from embryonic exposures to graded doses of polychlorinated biphenyl 126 (PCB126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Survival to hatching of shortnose sturgeon decreased with increasing dose, although the duration of the embryonic period was not significantly altered by exposure in either species. Morphometric features of larvae of both species were affected by dose, including shortening of the body, reduction in head size, reduction in quantity of yolk reserves, and reduction in eye size. Eye development in both species was delayed with increasing dose for both chemicals. The persistence of larvae in a food-free environment decreased inversely with dose in both species, with sharp declines occurring at PCB126 and TCDD doses of ≥1 ppb and ≥0.1 ppb, respectively. Dose-responsive early-life-stage toxicities reported here are among the more sensitive found in fish and occurred at burdens similar to those found in situ in a sympatric bottom-dwelling bony fish in the Hudson River Estuary. The present study is among the first demonstrating the sensitivity of any sturgeon to the hallmark early-life-stage toxicities induced by aryl hydrocarbon receptor agonists. Environ. Toxicol. Chem. 2012; 31: 2324–2337. © 2012 SETAC

Related Organizations
Keywords

Polychlorinated Dibenzodioxins, Rivers, Larva, Toxicity Tests, Fishes, Animals, Polychlorinated Biphenyls, Water Pollutants, Chemical, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Italian National Biodiversity Future Center