Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Padua research Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://eartharxiv.org/reposito...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Earth Surface Processes and Landforms
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Article . 2022
Data sources: HAL-ENS-LYON
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Lyon 3
Article . 2022
Data sources: HAL-Lyon 3
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.31223/x5qw6...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 9 versions
addClaim

Mapping riverbed sediment size from Sentinel‐2 satellite data

Authors: Marchetti, Giulia; Bizzi, Simone; Belletti, Barbara; Lastoria, Barbara; Comiti, Francesco; Carbonneau, Patrice Enrique;

Mapping riverbed sediment size from Sentinel‐2 satellite data

Abstract

AbstractA comprehensive understanding of river dynamics requires the grain size distribution of bed sediments and its variation across different temporal and spatial scales. Several techniques are already available for grain size assessment based on field and remotely sensed data. However, the existing methods are only applicable on small spatial scales and on short time scales. Thus, the operational measurement of grain size distribution of riverbed sediments at the catchment scale remains an open problem. A solution could be the use of satellite images as the main imaging platform. However, this would entail retrieving information at sub‐pixel scales.In this study, we propose a new approach to retrieve sub‐pixel scale grain size class information from Copernicus Sentinel‐2 imagery building upon a new image‐based grain size mapping procedure. Three Italian gravel‐bed rivers featuring different morphologies were selected for unmanned aerial vehicle (UAV) acquisitions, field surveys and laboratory analysis meant to serve as ground truth grain size data, ranging from medium sand to coarse gravel. Grain size maps on the river bars were generated in each study site by exploiting image texture measurements, upscaled and co‐registered with Sentinel‐2 data resolution.Relationships between the grain sizes measured and the reflectance values in Sentinel‐2 imagery were analysed using a machine learning framework. Results show statistically significant predictive models (MAE of ±8.34 mm and R2 = 0.92). The trained model was applied on 300 km of the Po River in Italy and allowed us to identify the gravel–sand transition occurring along this river length.Therefore, the approach presented here—based on freely available satellite data calibrated by low‐cost drone‐derived imagery—represents a promising step towards an automated surface mean grain size mapping over long river length, easily repeated through time for monitoring purposes.

Countries
United Kingdom, Italy, France
Keywords

550, [SDU.STU.GM] Sciences of the Universe [physics]/Earth Sciences/Geomorphology, [SHS.GEO] Humanities and Social Sciences/Geography, [SHS.GEO]Humanities and Social Sciences/Geography, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, [INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV], fluvial remote sensing; grain size mapping; machine learning; Sentinel-2; UAV, [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green