
doi: 10.1002/env.2424
We consider geostatistical regression models to predict spatial variables of interest, where likelihood‐based methods are used to estimate model parameters. It is known that parameters in the Matérn covariogram cannot be estimated well, even when increasing amounts of data are collected densely in a fixed domain. Although a best linear unbiased predictor has been proposed when model parameters are known, a predictor with estimated parameters is nonlinear and may be not the best in practice. Therefore, we propose an adjusted procedure for the likelihood‐based estimates to improve the predicted ability of the nonlinear spatial predictor. The adjusted parameter estimators based on minimizing a corrected Stein's unbiased risk estimator tend to have less bias than the conventional likelihood‐based estimators, and the resulting spatial predictor is more accurate and more stable. Statistical inference for the proposed method is justified both theoretically and numerically. To verify the practicability of the proposed method, a groundwater data set in Bangladesh is analyzed.
smoothing parameter, Matérn covariogram, spatial prediction, geostatistics, Applications of statistics to environmental and related topics, parameter estimation
smoothing parameter, Matérn covariogram, spatial prediction, geostatistics, Applications of statistics to environmental and related topics, parameter estimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
