Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmetricsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmetrics
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
versions View all 2 versions
addClaim

On estimation and prediction of geostatistical regression models via a corrected Stein's unbiased risk estimator

Authors: Yang, Hong-Ding; Chen, Chun-Shu;

On estimation and prediction of geostatistical regression models via a corrected Stein's unbiased risk estimator

Abstract

We consider geostatistical regression models to predict spatial variables of interest, where likelihood‐based methods are used to estimate model parameters. It is known that parameters in the Matérn covariogram cannot be estimated well, even when increasing amounts of data are collected densely in a fixed domain. Although a best linear unbiased predictor has been proposed when model parameters are known, a predictor with estimated parameters is nonlinear and may be not the best in practice. Therefore, we propose an adjusted procedure for the likelihood‐based estimates to improve the predicted ability of the nonlinear spatial predictor. The adjusted parameter estimators based on minimizing a corrected Stein's unbiased risk estimator tend to have less bias than the conventional likelihood‐based estimators, and the resulting spatial predictor is more accurate and more stable. Statistical inference for the proposed method is justified both theoretically and numerically. To verify the practicability of the proposed method, a groundwater data set in Bangladesh is analyzed.

Keywords

smoothing parameter, Matérn covariogram, spatial prediction, geostatistics, Applications of statistics to environmental and related topics, parameter estimation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!