
AbstractThe elucidation of mechanisms and limitations in electrode respiration by electroactive biofilms is significant for the development of rapidly emerging clean energy production and wastewater treatment technologies. In Geobacter sulfurreducens biofilms, the controlling steps in current production are thought to be the metabolic activity of cells, but still remain to be determined. By quantifying the DNA, RNA, and protein content during the long‐term growth of biofilms on polarized graphite electrodes, we show in this work that current production becomes independent of DNA accumulation immediately after a maximal current is achieved. Indeed, the mean respiratory rate of biofilms rapidly decreases after this point, which indicates the progressive accumulation of cells that do not contribute to current production or contribute to a negligible extent. These results support the occurrence of physiological stratification within biofilms as a consequence of respiratory limitations imposed by limited biofilm conductivity.
Eelectrochemistry, Dna, Electron Transport, Electricity, https://purl.org/becyt/ford/1.6, Biofilms, Electrochemistry, Fuel Cells, https://purl.org/becyt/ford/1, Geobacter, Biological Activity, Energy Conversion
Eelectrochemistry, Dna, Electron Transport, Electricity, https://purl.org/becyt/ford/1.6, Biofilms, Electrochemistry, Fuel Cells, https://purl.org/becyt/ford/1, Geobacter, Biological Activity, Energy Conversion
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
