
Abstract5‐Hydroxymethylfurfural (HMF) is considered an important building block for future bio‐based chemicals. Here, we present an experimental study using different ketoses (fructose, sorbose, tagatose) and aldoses (glucose, mannose, galactose) under aqueous acidic conditions (65 g L−1 substrate, 100–160 °C, 33–300 mM H2SO4) to gain insights into reaction pathways for hexose dehydration to HMF. Both reaction rates and HMF selectivities were significantly higher for ketoses than for aldoses, which is in line with literature. Screening and kinetic experiments showed that the reactivity of the different ketoses is a function of the hydroxyl group orientation at the C3 and C4 positions. These results, in combination with DFT calculations, point to a dehydration mechanism involving cyclic intermediates. For aldoses, no influence of the hydroxyl group orientation was observed, indicating a different rate‐determining step. The combination of the knowledge from the literature and the findings in this work indicates that aldoses require an isomerization to ketose prior to dehydration to obtain high HMF yields.
5-hydroxymethylfurfural, Models, Molecular, biomass, ketose, FUELS, PLATFORM, Water, TRANSFORMATION, aldose, GLUCOSE, BIOMASS, CONVERSION, Kinetics, sugar dehydration, ACID, Ketoses, Carbohydrate Conformation, Quantum Theory, Furaldehyde, SOLVENTS
5-hydroxymethylfurfural, Models, Molecular, biomass, ketose, FUELS, PLATFORM, Water, TRANSFORMATION, aldose, GLUCOSE, BIOMASS, CONVERSION, Kinetics, sugar dehydration, ACID, Ketoses, Carbohydrate Conformation, Quantum Theory, Furaldehyde, SOLVENTS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 107 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
