Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Crop Sciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Crop Science
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Stress response and detoxification mechanisms involved in non‐target‐site herbicide resistance in sunflower

Authors: Tatiana Vega; Mercedes Gil; Gabriela Martin; Sebastián Moschen; Liliana Picardi; Graciela Nestares;

Stress response and detoxification mechanisms involved in non‐target‐site herbicide resistance in sunflower

Abstract

AbstractThe nature of non‐target‐site herbicide resistance (NTSR) to imidazolinone (IMI) in HA425 sunflower (Helianthus annuus L.) has not yet been fully characterized but could be related to xenobiotic metabolism. The objective of this study was to evaluate the role of cytochrome P450 monooxygenases (P450s) and other detoxification‐related proteins in NTSR in sunflower. Two sunflower inbred lines were used: HA 425, which is IMI resistant (Imisun), and HA 89, which is IMI susceptible. The growth response to the IMI herbicide imazethapyr in combination with the P450 inhibitors 1‐aminobenzotriazole (ABT) or piperonyl butoxide (PBO) was evaluated in 15‐d‐old sunflower plantlets. Roots were collected, and label‐free quantitation (LFQ) proteomic analysis was carried out to characterize the NTSR mechanisms involved in the IMI resistance trait in sunflower. The increased phytotoxicity of imazethapyr observed in the resistant line when ABT or PBO were present agrees with the hypothesis that NTSR mechanisms may contribute to herbicide resistance in sunflower. The herbicide treatment also led to changes in the levels of biotic and abiotic stress‐related proteins, glutathione S‐transferases, and cytochrome P450s, among others. Plant growth and root protein expression response to IMI herbicides in sunflower would be a combination of stress‐related and detoxification mechanisms. Understanding the basis of NTSR becomes helpful to exploit this trait in sunflower crop and to develop xenobiotic‐resistant, soil‐remediating cultivars.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!