
doi: 10.1002/cpe.7441
SummaryThe gamma regression model explores the relationship between a skewed response variable and one or more independent variables. The method of maximum likelihood is popularly adopted to model the relationship. However, the method performance drops when linear dependency exists among the predictors (multicollinearity). In this article, we develop a new method to account for multicollinearity in gamma regression model. The proposed estimator theoretically dominates the existing estimators. The simulation studies and real‐life application supports the theoretical findings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
