Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bedfor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Concurrency and Computation Practice and Experience
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Cache‐oblivious matrix algorithms in the age of multicores and many cores

Authors: Heinecke, Alexander; Trinitis, Carsten;

Cache‐oblivious matrix algorithms in the age of multicores and many cores

Abstract

SummaryThis article highlights the issue of upcoming wider single‐instruction, multiple‐data units as well as steadily increasing core counts on contemporary and future processor architectures. We present the recent port to and latest results of cache‐oblivious algorithms and implementations of our TifaMMy code on four architectures: SGI's UltraViolet distributed shared‐memory machine, Intel's latest x86 architecture code‐named Sandy Bridge, AMD's new Bulldozer architecture, and Intel's future Many Integrated Core architecture. TifaMMy's matrix multiplication and LU decomposition routines have been adapted and tuned with regard to these architectures. Results are discussed and compared with vendors’ architecture‐specific and optimized libraries, Math Kernel Library and AMD Core Math Library, for both a standard C++ version with vectorization compiler switches and TifaMMy's highly optimized vector intrinsics version. We provide insights into architectural properties and comment on the feasibility of heterogeneous cores and accelerators, namely graphics processing units. Besides bare‐metal performance, the test platforms’ ease of use is analyzed in detail, and the portability of our approach to new and upcoming silicon is discussed with regard to required effort on code change abstraction levels.As a result, we demonstrate that because of its generic structure in terms of memory organization, TifaMMy executes with equally efficient performance on all four architectures as it automatically adapts itself to architectural parameters without losing performance against the Math Kernel Library and AMD Core Math Library, underlining its generic and cache‐oblivious properties, as the porting effort was relatively low compared with that in other implementations.Copyright © 2012 John Wiley & Sons, Ltd.

Country
United Kingdom
Related Organizations
Keywords

cache oblivious, linear algebra, shared-memory platforms, block recursive, parallelization, performance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Green