Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Biomedical Engineering
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Registration of plantar pressure images

Authors: Francisco P. M. Oliveira; João Manuel R. S. Tavares;

Registration of plantar pressure images

Abstract

SUMMARYIn this work, five computational methodologies to register plantar pressure images are compared: (1) the first methodology is based on matching the external contours of the feet; (2) the second uses the phase correlation technique; (3) the third addresses the direct maximization of cross‐correlation using the Fourier transform; (4) the fourth minimizes the sum of squared differences using the Fourier transform; and (5) the fifth methodology iteratively optimizes an intensity (dis)similarity measure based on Powell's method. The accuracy and robustness of the five methodologies were assessed by using images from three common plantar pressure acquisition devices: a Footscan system, an EMED system, and a light reflection system. Using the residual error as a measure of accuracy, all methodologies revealed to be very accurate even in the presence of noise. The most accurate was the methodology based on the iterative optimization, when the mean squared error was minimized. It achieved a residual error inferior to 0.01 mm and 0.6 mm for non‐noisy and noisy images, respectively. On the other hand, the methodology based on image contour matching was the fastest, but its accuracy was the lowest. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords

Technological sciences, Other engineering and technologies, Fourier Analysis, Foot, Ciências da engenharia e tecnologias::Outras ciências da engenharia e tecnologias, Ciências Tecnológicas, Outras ciências da engenharia e tecnologias, Engineering and technology::Other engineering and technologies, Image Processing, Computer-Assisted, Pressure, Humans, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
hybrid