
pmid: 34914142
AbstractThe rapid development of industrialization and population has brought water, air‐pollution and energy crises. Solar‐driven catalysis is expected to relieve these issues. However, limited by poor light harvesting, serious charge recombination of semiconductors, and high surface reaction barriers, the low efficiency of solar conversion is far from satisfactory for industrial needs. Ferroelectrics are considered to be promising photocatalysts to overcome these shortcomings. Herein, perovskite ferroelectrics such as BaTiO3, PbTiO3, BiFeO3 and LiNbO3, layered bismuth‐based ferroelectrics like Bi2WO6 and Bi2MoO6, and other ferroelectrics are introduced, and their crystal structure, polarity source and synthetic method are highlighted. Subsequently, research progress in ferroelectrics for photocatalysis is summarized, including pollution degradation, water splitting and CO2 reduction. Finally, the current challenges and future prospects of ferroelectric photocatalysts are provided. The purpose of this review is not only to provide a timely summary for the application of ferroelectrics in photocatalysis, but also to present deep insight and a guideline for future research work into ferroelectrics.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
