
pmid: 31287209
pmc: PMC7064923
AbstractBiomedicinally important histone lysine methyltransferases (KMTs) catalyze the transfer of a methyl group from S‐adenosylmethionine (AdoMet) cosubstrate to lysine residues in histones and other proteins. Herein, experimental and computational investigations on human KMT‐catalyzed ethylation of histone peptides by using S‐adenosylethionine (AdoEth) and Se‐adenosylselenoethionine (AdoSeEth) cosubstrates are reported. MALDI‐TOF MS experiments reveal that, unlike monomethyltransferases SETD7 and SETD8, methyltransferases G9a and G9a‐like protein (GLP) do have the capacity to ethylate lysine residues in histone peptides, and that cosubstrates follow the efficiency trend AdoMet>AdoSeEth>AdoEth. G9a and GLP can also catalyze AdoSeEth‐mediated ethylation of ornithine and produce histone peptides bearing lysine residues with different alkyl groups, such as H3K9meet and H3K9me2et. Molecular dynamics and free energy simulations based on quantum mechanics/molecular mechanics potential supported the experimental findings by providing an insight into the geometry and energetics of the enzymatic methyl/ethyl transfer process.
info:eu-repo/classification/ddc/540, Lysine, Molecular Conformation, Synthetic Organic Chemistry, Histone-Lysine N-Methyltransferase, Full Papers, Molecular Dynamics Simulation, 540, Biocatalysis, Humans, Density Functional Theory
info:eu-repo/classification/ddc/540, Lysine, Molecular Conformation, Synthetic Organic Chemistry, Histone-Lysine N-Methyltransferase, Full Papers, Molecular Dynamics Simulation, 540, Biocatalysis, Humans, Density Functional Theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
