
pmid: 18600681
AbstractPresented is a new simple method for multidimensional optimization of fed‐batch fermentations based on the use of the orthogonal collocation technique. Considered is the problem of determination of optimal programs for fermentor temperature, substrate concentration in feed, feeding profile, and process duration. By reformulation of the state and control variables is obtained a nonsingular form of the optimization problem which has considerable advantage over the singular case since a complicated procedure for determination of switching times for feeding is avoided. The approximation of the state variables by Lagrange polynomials enables simple incorporation of split boundary conditions in the approximation, and the use of orthogonal collocations provides stability for integration of state and costate variables. The interpolation points are selected to obtain highest accuracy for approximation of the objective functional by the Radau–Lobatto formula. The control variables are determined by optimization of the Hamiltonian at the collocation points with the DFP method. Constraints are imposed on state and control variables.The method is applied for a homogeneous model of fermentation with volume, substrate, biomass, and product concentrations as the state variables. Computer study shows considerable simplicity of the method, its high accuracy for low order of approximation, and efficient convergence.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
