
AbstractIn network meta‐analysis (NMA), treatments can be complex interventions, for example, some treatments may be combinations of others or of common components. In standard NMA, all existing (single or combined) treatments are different nodes in the network. However, sometimes an alternative model is of interest that utilizes the information that some treatments are combinations of common components, called component network meta‐analysis (CNMA) model. The additive CNMA model assumes that the effect of a treatment combined of two components A and B is the sum of the effects of A and B, which is easily extended to treatments composed of more than two components. This implies that in comparisons equal components cancel out. Interaction CNMA models also allow interactions between the components. Bayesian analyses have been suggested. We report an implementation of CNMA models in the frequentist R package netmeta. All parameters are estimated using weighted least squares regression. We illustrate the application of CNMA models using an NMA of treatments for depression in primary care. Moreover, we show that these models can even be applied to disconnected networks, if the composite treatments in the subnetworks contain common components.
Biometry, Models, Statistical, Primary Health Care, Depression, disconnected networks, multiple interventions, 610, Research Papers, Kombinationstherapie, Applications of statistics to biology and medical sciences; meta analysis, complex interventions, Humans, combination therapies, network meta-analysis
Biometry, Models, Statistical, Primary Health Care, Depression, disconnected networks, multiple interventions, 610, Research Papers, Kombinationstherapie, Applications of statistics to biology and medical sciences; meta analysis, complex interventions, Humans, combination therapies, network meta-analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 128 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
