
pmid: 31006111
AbstractGlobal ecosystem models suggest that bedrock nitrogen (N) weathering contributes 10–20% of total N inputs to the natural terrestrial biosphere and >38% of ecosystem N supplies in temperate forests specifically. Yet, the role of rock N weathering in shaping ecological processes and biogeochemical fluxes is largely unknown. Here, we show that temperate forest ecosystems underlain by N‐rich bedrock exhibit higher free‐living N fixation rates than similar forests residing on N‐poor parent materials, across sites experiencing a range of climate and tectonic regimes. This seemingly counterintuitive result can be explained by increased accumulation of soil C and P in high bedrock N sites, resulting in increased energy inputs and nutrient supplies to N fixing microorganisms. Our findings advance a novel ecosystem biogeochemical framework that recognizes long‐term plant–soil–microbe feedbacks in shaping biogeochemical processes, with potentially widespread implications given the global distribution of bedrock N across Earth's terrestrial biomes.
Soil, Nitrogen, Nitrogen Fixation, Forests, Ecosystem
Soil, Nitrogen, Nitrogen Fixation, Forests, Ecosystem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
