Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
British Journal of Clinical Pharmacology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

Solanidine‐derived CYP2D6 phenotyping elucidates phenoconversion in multimedicated geriatric patients

Authors: Jens Andreas Sarömba; Julian Peter Müller; Jolanta Tupiec; Anjali Roeth; Berkan Kurt; Florian Kahles; Thea Laurentius; +3 Authors

Solanidine‐derived CYP2D6 phenotyping elucidates phenoconversion in multimedicated geriatric patients

Abstract

AbstractAimsPhenoconversion, a genotype‐phenotype mismatch, challenges a successful implementation of personalized medicine. The aim of this study was to detect and determine phenoconversion using the solanidine metabolites 3,4‐seco‐solanidine‐3,4‐dioic acid (SSDA) and 4‐OH‐solanidine as diet‐derived cytochrome P450 2D6 (CYP2D6) biomarkers in a geriatric, multimorbid cohort with high levels of polypharmacy.MethodsBlood samples and data of geriatric, multimedicated patients were collected during physician counsel (CT: NCT05247814). Solanidine and its metabolites were determined via liquid chromatography/tandem mass spectrometry and used for CYP2D6 phenotyping. CYP2D6 genotyping was performed and activity scores (AS) were assigned. Complete medication intake was assessed. A shift of the AS predicted via genotyping as measured by phenotyping was calculated.ResultsSolanidine and its metabolites were measured in 88 patients with complete documentation of drug use. Patients had a median age of 83 years (interquartile range [IQR] 77‐87) and the majority (70.5%, n = 62) were female. Patients took a median of 15 (IQR 12‐17) medications. The SSDA/solanidine metabolic ratio correlated significantly with the genotyping‐derived AS (P < .001) and clearly detected poor metabolizers. In the model adjusted for age, sex, Charlson Comorbidity Index and estimated glomerular filtration rate each additional CYP2D6 substrate/inhibitor significantly lowered the expected AS by 0.53 (95% confidence interval 0.85‐0.21) points in patients encoding functional CYP2D6 variants (R2 = 0.242).ConclusionsPhenotyping of CYP2D6 activity by measurement of diet‐derived biomarkers elucidates phenoconversion in geriatric patients. These results might serve as a prerequisite for the validation and establishment of a bedside method to measure CYP2D6 activity in multimorbid patients for successful application of personalized drug prescribing.

Country
Germany
Keywords

610, Original Article, info:eu-repo/classification/ddc/610

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid