<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractUnderstanding the characteristics of radicals formed from silicon‐containing heavy analogues of alkenes is of great importance for their application in radical polymerization. Steric and electronic substituent effects in compounds such as phosphasilenes not only stabilize the Si=P double bond, but also influence the structure and species of the formed radicals. Herein we report our first investigations of radicals derived from phosphasilenes with Mes, Tip, Dur, and NMe2 substituents on the P atom, using muon spin spectroscopy and DFT calculations. Adding muonium (a light isotope of hydrogen) to phosphasilenes reveals that: a) the electron‐donor NMe2 and the bulkiest Tip‐substituted phosphasilenes form several muoniated radicals with different rotamer conformations; b) bulky Dur‐substituted phosphasilene forms two radicals (Si‐ and P‐centred); and c) Mes‐substituted phosphasilene mainly forms one species of radical, at the P centre. These significant differences result from intramolecular substituent effects.
muon spin spectroscopy, Conformational analysis, ddc:540, conformational analysis, phosphasilene, Muon spin spectroscopy, phosphasilenes, 540, radicals, Communications
muon spin spectroscopy, Conformational analysis, ddc:540, conformational analysis, phosphasilene, Muon spin spectroscopy, phosphasilenes, 540, radicals, Communications
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |