Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Angewandte Chemiearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Angewandte Chemie
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie International Edition
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface

Authors: Willem K. Kegel; Stephen G. Hickey; Stephen G. Hickey; Daniel Vanmaekelbergh; François Reincke;

Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface

Abstract

Novel materials based on 2D and 3D arrays of nanocrystalline building blocks can be prepared from colloidal suspensions by controlled processing. There is a large effort in this field due to the exciting electrical, magnetic 5] and optical properties of such systems, which can be tuned by the size of the building blocks and the interactions between them. Ordered arrays of uncharged, sterically stabilized nanocrystals have been successfully obtained by a subtle destabilization of the suspension or by assembly at a liquid/air or liquid/liquid interface. There is, however, an important class of suspensions that are stable owing to the nanocrystal surface charge. Assembly of uncapped, charged nanocrystals into arrays is considerably more difficult as destabilization of a suspension usually leads to uncontrolled coagulation. Herein, we report surprising results that may lead to novel routes for the controlled fabrication of materials from chargestabilized nanocrystal colloids. We have observed that gold nanocrystals spontaneously form a monolayer at the water/oil interface if the surface charge of the nanocrystals is gradually reduced. The separation between the nanocrystals in the layer is smaller than the width of the diffuse electrical double layer. Nevertheless, coagulation of the particles into clumps does not occur. The monolayers are remarkably robust and can be easily transferred to substrates, opening the way to technological applications. The spontaneous 2D assembly of charged nanocrystals is qualitatively described in terms of a reduction of the water/oil interfacial energy upon particle adsorption counteracted by electrostatic repulsion in the film. Suspensions of sterically stabilized and supposedly uncharged gold nanocrystals have been used as model systems for the study of self-assembly. A wealth of gold nanocrystal structures have been reported and their optoelectrical properties are still under investigation. The synthesis of charge-stabilized gold sols is well established. The processing of such sols has been focused on the capping of charged nanocrystals with organic molecules to allow transfer to a

Country
Netherlands
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    437
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
437
Top 1%
Top 1%
Top 1%
Green
bronze