
pmid: 30794343
handle: 1959.13/1413618 , 1959.3/458074
AbstractSemiconductor photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but its efficiency is severely restricted by the rapid recombination of charge carriers in the bulk phase and on the surface of photocatalysts. Polarization has emerged as one of the most effective strategies for addressing the above‐mentioned issues, thus effectively promoting photocatalysis. This review summarizes the recent advances on improvements of photocatalytic activity by polarization‐promoted bulk and surface charge separation. Highlighted is the recent progress in charge separation advanced by different types of polarization, such as macroscopic polarization, piezoelectric polarization, ferroelectric polarization, and surface polarization, and the related mechanisms. Finally, the strategies and challenges for polarization enhancement to further enhance charge separation and photocatalysis are discussed.
change separation, oxidation, surface chemistry, semiconductors, photocatalysis, 541
change separation, oxidation, surface chemistry, semiconductors, photocatalysis, 541
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 811 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.01% |
