
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Vast amounts of data are generated by sensors that are used to monitor people, animals, plants, machines, structures, and the environment. Increasingly, this data is used to create relevant context based on sophisticated pattern recognition algorithms trained using past labeled data. However, most of these sensor systems are severely constrained regarding their communication and computation capabilities due to limitations on available energy, size, or location. New computational approaches are needed to overcome the limitations of existing digital processors in contextual processing. This article discusses the development of the first such computer that is entirely made based on common 3D‐printing materials and techniques. It is demonstrated that a simple structure printed with regular 3D printers can be driven and used with common measurement tools to perform sophisticated contextual computations, including standard benchmarks and a demonstration of user activity detection from sensor data. The correlation between memory capacity, nonlinearity, and sampling rates with this computer is examined. The 3D‐printed structure may be used as a stand‐alone computer to detect patterns in general data streams. Moreover, the computer can be integrated with the sensorized 3D‐printed structures, leading to the development of cognizant 3D‐printed systems comprising sensors and contextual processors.
TK7885-7895, Computer engineering. Computer hardware, thermal coupling, Control engineering systems. Automatic machinery (General), Additive manufacturing, TJ212-225, 3D printing, reservoir computing, additive manufacturing, Reservoir computing, Thermal coupling
TK7885-7895, Computer engineering. Computer hardware, thermal coupling, Control engineering systems. Automatic machinery (General), Additive manufacturing, TJ212-225, 3D printing, reservoir computing, additive manufacturing, Reservoir computing, Thermal coupling
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
