
AbstractThe chloride ion battery has been developed as one of the alternative battery chemistries beyond lithium ion, toward abundant material resources and high energy density. Its application, however, is limited by the dissolution of electrode materials and side reactions in the liquid electrolyte. Herein, a solid polymer electrolyte allowing chloride ion transfer and consisting of poly(ethylene oxide) as the polymer matrix, tributylmethylammonium chloride as the chloride salt, and succinonitrile as the solid plasticizer is reported. The as‐prepared polymer electrolyte shows conductivities of 10−5–10−4 S cm−1 in the temperature range of 298–343 K. When it is assembled with the iron oxychloride/lithium electrode system, reversible electrochemical redox reactions of FeOCl/FeO at the cathode side and Li/LiCl at the anode side are realized, demonstrating the first all‐solid‐state rechargeable chloride ion battery.
Full Papers
Full Papers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
