Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Optical Mat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Optical Materials
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Optical Materials
Article . 2023
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4+

Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red-Emitting Phosphor K2TiF6:Mn4+
Authors: Jur W. de Wit; Thomas P. van Swieten; Marie Anne van de Haar; Andries Meijerink; Freddy T. Rabouw;

Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4+

Abstract

AbstractMn4+‐doped fluorides are popular phosphors for warm‐white lighting, converting blue light from light‐emitting diodes (LEDs) into red light. However, they suffer from droop, that is, decreasing performance at increasing power, limiting their applicability for high‐power applications. Previous studies highlight different causes of droop. Here, a unified picture of droop of Mn4+‐doped K2TiF6, accounting for all previously proposed mechanisms, is provided. Combining continuous‐wave and pulsed experiments on samples of different Mn4+content with kinetic Monte Carlo modeling, the contributions of absorption bleach, thermal quenching, and Auger quenching at different excitation densities, are quantified. This work contributes to understanding the fundamental limitations of these materials and may inspire strategies to make Mn4+‐doped fluorides more efficient in high‐power applications.

Country
Netherlands
Related Organizations
Keywords

thermal quenching, absorption bleach, Auger quenching, red phosphor, droop, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid