Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Functional ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Functional Materials
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

All‐Layered 2D Optoelectronics: A High‐Performance UV–vis–NIR Broadband SnSe Photodetector with Bi2Te3 Topological Insulator Electrodes

Authors: Jiandong Yao; Zhaoqiang Zheng; Guowei Yang;

All‐Layered 2D Optoelectronics: A High‐Performance UV–vis–NIR Broadband SnSe Photodetector with Bi2Te3 Topological Insulator Electrodes

Abstract

Nanoelectronics is in urgent demand of exceptional device architecture with ultrathin thickness below 10 nm and dangling‐bond‐free surface to break through current physical bottleneck and achieve new record of integration level. The advance in 2D van der Waals materials endows scientists with new accessibility. This study reports an all‐layered 2D Bi2Te3‐SnSe‐Bi2Te3 photodetector, and the broadband photoresponse of the device from ultraviolet (370 nm) to near‐infrared (808 nm) is demonstrated. In addition, the optimized responsivity reaches 5.5 A W−1, with the corresponding eternal quantum efficiency of 1833% and detectivity of 6 × 1010 cm Hz1/2 W−1. These figures‐of‐merits are among the best values of the reported all‐layered 2D photodetectors, which are several orders of magnitude higher than those of the previous SnSe photodetectors. The superior device performance is attributed to the synergy of highly conductive surface state of Bi2Te3 topological insulator, perfect band alignment between Bi2Te3 and SnSe as well as small interface potential fluctuation. Meanwhile, the all‐layered 2D device is further constructed onto flexible mica substrate and its photoresponse is maintained roughly unchanged upon 60 bending cycles. The findings represent a fundamental scenario for advancement of the next generation high performance and high integration level flexible optoelectronics.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    264
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
264
Top 1%
Top 10%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!