Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationer från K...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Publikationer från KTH
Bachelor thesis . 2024
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

JVM Tuning with Machine Learning on Garbage Collection Logs

Authors: Eren, Yagmur;

JVM Tuning with Machine Learning on Garbage Collection Logs

Abstract

The performance of Java applications is crucial for developers and system administrators. Performance is primarily assessed through throughput (work done in a unit of time) and latency (responsiveness) of the application. These depend not only on the efficiency of the written code but also on the performance of the language runtime, the Java Virtual Machine (JVM). Optimizing the performance of the JVM or adjusting the JVM flags for each application can be a tedious task because it requires significant expertise and effort. This project proposes a tuning strategy for specific memory-related JVM flags based on Machine Learning (ML) techniques, using information collected from the Garbage Collection (GC) logs where GC is a process of reclaiming unused memory during runtime in JVM. We explore the possibility of improving throughput while maintaining an acceptable application latency by using the JVM flag values suggested by the ML models for one Java program at a time. DaCapo and SPECjbb2015 benchmarks are the programs that we use to measure performance. We analyze the impact of different ML techniques on performance improvements. According to our findings, tuning the selected JVM flags using suggestions from the models shows considerable potential to enhance throughput by up to 20% compared to default flag settings while maintaining latency within acceptable limits. This project aims to help developers and system administrators automatically determine optimum values for memory-related JVM flags, ultimately saving time and effort to achieve better throughput without compromising latency. Prestandan hos Java-applikationer är avgörande för utvecklare och systemadministratörer. Prestanda bedöms främst genom genomströmning (arbete utfört under en tidsenhet) och latens (responsivitet) hos applikationen. Dessa beror inte bara på effektiviteten hos den skrivna koden utan också på prestandan hos exekveringsmiljön, den s.k. JVM. Att optimera prestandan hos JVM eller justera JVM-flaggor för varje applikation kan vara en tidskrävande uppgift eftersom det kräver betydande expertis och ansträngning. Detta projekt föreslår en strategi för justering av specifika minnesrelaterade JVM-flaggor baserat på maskininlärnings-tekniker, med hjälp av information som samlats in från GC-loggar där GC är en process för att återta oanvänt minne under körning i JVM. Vi utforskar möjligheten att förbättra genomströmningen samtidigt som vi bibehåller en acceptabel applikationslatens genom att använda de flaggvärden som föreslås av maskininlärning-modellerna för ett Java-program åt gången. DaCapo och SPECjbb2015 benchmarkprogrammen är de program som vi använder för att mäta prestanda. Vi analyserar inverkan av olika maskininlärnings-tekniker på prestandaförbättringar. Enligt våra resultat visar justering av de valda JVM-flaggorna med hjälp av förslag från modellerna betydande potential att förbättra genomströmningen med upp till 20% jämfört med standardflagginställningar samtidigt som latensen hålls inom acceptabla gränser. Detta projekt syftar till att hjälpa utvecklare och systemadministratörer att automatiskt bestämma optimala värden för minnesrelaterade JVM-flaggor, vilket slutligen sparar tid och ansträngning för att uppnå bättre genomströmning utan att kompromissa med latensen.

Country
Sweden
Related Organizations
Keywords

Maskininlärning, Garbage First, Computer and Information Sciences, Performance Optimization, Auto-tuning, Automatisk justering, Garbage Collection-loggar, Data- och informationsvetenskap, Java Virtual Machine, Garbage Collection logs, Machine Learning, Prestandaoptimering, JVM flags, Java Virtual Machibe, JVM-flaggor

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities