
arXiv: 2410.22011
handle: 20.500.14352/122425
This work introduces a graph-phased Szegedy's quantum walk, which incorporates link phases and local arbitrary phase rotations (APR), unlocking new possibilities for quantum algorithm efficiency. We demonstrate how to adapt quantum circuits to these advancements, allowing phase patterns that ensure computational practicality. The graph-phased model broadens the known equivalence between coined quantum walks and Szegedy's model, accommodating a wider array of coin operators. Through illustrative examples, we reveal intriguing disparities between classical and quantum interpretations of walk dynamics. Remarkably, local APR phases emerge as powerful tools for marking graph nodes, optimizing quantum searches without altering graph structure. We further explore the surprising nuances between single and double operator approaches, highlighting a greater range of compatible coins with the latter. To facilitate these advancements, we present an improved classical simulation algorithm, which operates with superior efficiency. This study not only refines quantum walk methodologies but also paves the way for future explorations, including potential applications in quantum search and PageRank algorithms. Our findings illuminate the path towards more versatile and powerful quantum computing paradigms.
Quantum Physics, 53, Network navigation, Física (Física), Quantum information processing, FOS: Physical sciences, Quantum algorithms computation, Quantum simulation, Quantum Physics (quant-ph), 2212 Física Teórica, Quantum circuits, Quantum walks
Quantum Physics, 53, Network navigation, Física (Física), Quantum information processing, FOS: Physical sciences, Quantum algorithms computation, Quantum simulation, Quantum Physics (quant-ph), 2212 Física Teórica, Quantum circuits, Quantum walks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
