
Porast video prometa, potaknut multimedijskim aplikacijama i sadržajem visoke rezolucije, nadmašio je mogućnosti tradicionalnih metoda kodiranja videa. Učinkovita kompresija danas je ključna, osobito za videozapise u stvarnom vremenu pod ograničenjima propusnosti i kašnjenja. Ova disertacija unapređuje kodiranje videa za bespilotne letjelice u sustavima pogleda iz prvog lica (FPV), koji zahtijevaju prijenos visoke kvalitete uz nisko kašnjenje. Disertacija obuhvaća niz istraživanja usmjerenih na optimizaciju kodiranja videa za bespilotne letjelice, prvenstveno unutar FPV sustava. Prvo istraživanje analizira učinkovitost H.264 i H.265 kodiranja za snimke dronova 4K rezolucije, uključujući kvalitetu videa, vrijeme kodiranja i potrošnju energije. Drugo uvodi algoritam Motion Dynamics Input Search za optimizaciju procjene pokreta korištenjem dinamike bespilotne letjelice i korisničkih unosa. Posljednje istraživanje predlaže odgađanje procesa demozaiciranja na stranu dekodera, izravno kodirajući Bayerov uzorak, čime se smanjuje količina ulaznih podataka i latencija. Zajedno, ovi doprinosi poboljšavaju prijenos videa u stvarnom vremenu i potiču daljnji razvoj FPV tehnologije.
The surge in video traffic, driven by multimedia applications and high-resolution content, has outpaced traditional video encoding methods. Efficient compression is now vital, especially for real-time video under bandwidth and latency constraints. This thesis enhances video encoding for Unmanned Aerial Vehicles (UAVs) in First-Person View (FPV) systems, which demand low-latency, high-quality feeds. This thesis encompasses a series of studies focused on optimizing video encoding for UAVs, primarily within FPV systems The first study evaluates H.264 and H.265 efficiency for 4K drone footage, analyzing video quality, encoding time, and energy use. The second introduces the Motion Dynamics Input Search algorithm to optimize Motion Estimation using UAV dynamics and user input. The final study proposes deferring demosaicking to the decoder, encoding Bayer pattern data directly, reducing input size and latency. Together, these contributions improve real-time video transmission for UAVs, advancing FPV drone technology.
bespilotna letjelica, Computer science and technology. Computing. Data processing, TECHNICAL SCIENCES. Computing., TEHNIČKE ZNANOSTI. Računarstvo., unmanned aerial vehicle, video kodiranje, kompresija podataka, info:eu-repo/classification/udc/004(043.3), Računalna znanost i tehnologija. Računalstvo. Obrada podataka, video coding, data compression, obrada slike, image processing
bespilotna letjelica, Computer science and technology. Computing. Data processing, TECHNICAL SCIENCES. Computing., TEHNIČKE ZNANOSTI. Računarstvo., unmanned aerial vehicle, video kodiranje, kompresija podataka, info:eu-repo/classification/udc/004(043.3), Računalna znanost i tehnologija. Računalstvo. Obrada podataka, video coding, data compression, obrada slike, image processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
