Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao FER Repositoryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Razvoj programskog agenta-igrača za računalnu igru primjenom podržanog učenja

Authors: Tadić, Bartul;

Razvoj programskog agenta-igrača za računalnu igru primjenom podržanog učenja

Abstract

In the last few years, deep reinforcement learning has found extensive application in computer games and simulators due to ability to generate a large number of interactive and visually-rich simulations. In this paper, a 3D environment is developed using Unity game engine, and the use of the ML-Agents Toolkit for training intelligent agents with a PyTorch implementation of the Proximal Policy Optimization (PPO) algorithm is described. The paper compares the performance of different configurations and discusses successful training outcomes. Through reinforcement learning, the agent has learned skills such as movement, environment exploration, enemy avoidance, and coin collection. Additionally, the paper covers the theory behind machine learning, reinforcement learning, deep neural networks, the PPO algorithm, and the use of ML-Agents Toolkit.

Zadnjih godina razvoj u dubokom podržanom učenju uvelike je imao primjenu u računalnim igricama i simulatorima zbog mogućnosti generiranja velikog broja interaktivnih i vizualno bogatih simulacija. U ovom radu, razvijeno je 3D okruženje koristeći pogonski sustav za računalne igre Unity te je opisana uporaba ML-Agents Toolkita za treniranje inteligentnih agenata pomoću gotove PyTorch implementacije algoritma Proximal Policy Optimization (PPO). U radu su uspoređene performanse različitih konfiguracija te opisano uspješno treniranje. Podržanim učenjem, agent je naučio vještine kretanja i istraživanja okoline, izbjegavanje neprijatelja te skupljanja novčića. Također, u radu je pokrivena teorija iza strojnog učenja, podržanog učenja, dubokih neuronskih mreža, algoritma PPO te korištenje programskog alata ML-Agents.

Country
Croatia
Related Organizations
Keywords

Podržano učenje, machine learning, Unity, PPO algorithm, deep neural networks, TECHNICAL SCIENCES. Computing., TEHNIČKE ZNANOSTI. Računarstvo., Reinforcement learning, ML-Agents Toolkit, PPO algoritam, duboke neuronske mreže, strojno učenje

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!